Дан график производной функции

Дан график производной функции

7. Количество точек максимума функции по графику производной (вар. 45)

На рисунке изображен график y = f'(x) — производной функции f(x), определенной на интервале (‐5; 19). Найдите количество точек максимума функции f(x), принадлежащих отрезку [‐3; 15].

Поведение функции зависит от знака производной. Если производная на интервале положительна, то функция на этом интервале возрастает. Если производная отрицательна, то функция убывает. Если производная меняет свой знак с "+" на "", т.е. функция меняет возрастание на убывание в некоторой точке, то такая точка и есть точка максимума функции. Её-то мы и ищем на графике. Мы видим три точки, в которых производная равна нулю и меняет свой знак, — точки экстремума. И только в одной из них — в точке 4 производная меняет знак с "+" на "". Ответ: 1 Для большей уверенности полезно построить простую схему поведения производной. И сделать вывод о поведении функции, а также о количестве точек экстремума.

Автор: Ольга Себедаш Просмотров: 196250

Комментарии к этой задаче:

Комментарий добавил(а): Школьник
Дата: 2014-10-19

Спасибо большое за пояснения)

Комментарий добавил(а): Александр
Дата: 2015-10-23

Очень хорошее объяснение.

Комментарий добавил(а): Илайчик
Дата: 2015-12-17

Что же, надо заучивать

Комментарий добавил(а): Олег
Дата: 2015-12-28

Комментарий добавил(а): Дмитрий
Дата: 2016-06-03

Комментарий добавил(а): Миша
Дата: 2016-03-30

Комментарий добавил(а): Катя
Дата: 2016-04-12

Большое спасибо.Не могла понять,как эт определяют,а теперь поняла.

Комментарий добавил(а): Владимир
Дата: 2016-04-13

Спасибо огромное, очень толково и понятно объяснили.

Комментарий добавил(а): Ольга
Дата: 2016-06-02

Спасибо! Очень понятно нарисовали.

Комментарий добавил(а): Людмила
Дата: 2017-11-06

а что точка x=18 не является точкой максимума?

Комментарий добавил(а): Д
Дата: 2018-03-12

Реально помогло и очень понятно

Комментарий добавил(а): Лариса
Дата: 2018-03-13

спасибо, теперь все понятно!

Комментарий добавил(а): ильсия
Дата: 2018-01-10

все очень понятно.спасибо

Комментарий добавил(а):
Дата: 2019-04-08

Комментарий добавил(а):
Дата: 2019-10-13

Комментарий добавил(а):
Дата: 2019-11-14

Минимумом называют точку на функции, в которой значение функции меньше, чем в соседних точках.

Максимумом называют точку на функции, в которой значение функции больше, чем в соседних точках.

Также можно сказать, что в этих точках меняется направление движения функции: если функция перестает падать и начинает расти – это точка минимума, наоборот – максимума.

Минимумы и максимумы вместе именуют экстремумами функции.

Иными словами, все пять точек, выделенных на графике выше, являются экстремумами.

Читайте также:  925 Sl9ka costa rica характеристики

В точках экстремумов (т.е. максимумов и минимумов) производная равна нулю.

Благодаря этому найти эти точки не составляет проблем, даже если у вас нет графика функции.

Внимание! Когда пишут экстремумы или максимумы/минимумы имеют в виду значение функции т.е. (y). Когда пишут точки экстремумов или точки максимумов/минимумов имеют в виду иксы в которых достигаются максимумы/минимумы. Например, на рисунке выше, (-5) точка минимума (или точка экстремума), а (1) – минимум (или экстремум).

Как найти точки экстремумов функции по графику производной (7 задание ЕГЭ)?

Давайте вместе найдем количество точек экстремума функции по графику производной на примере:

У нас дан график производная — значит ищем в каких точках на графике производная равна нулю. Очевидно, это точки (-13), (-11), (-9),(-7) и (3). Количество точек экстремума функции – (5).

Внимание! Если дан график производной функции, а нужно найти точки экстремумов функции, мы не считаем максимумы и минимумы производной! Мы считаем точки, в которых производная функции обращается в ноль (т.е. пересекает ось (x)).

Как найти точки максимумов или минимумов функции по графику производной (7 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно вспомнить еще два важных правил:

— Производная положительна там, где функция возрастает.
— Производная отрицательна там, где функция убывает.

С помощью этих правил давайте найдем на графике производной точки минимума и максимума функции.

Понятно, что минимумы и максимумы надо искать среди точек экстремумов, т.е. среди (-13), (-11), (-9),(-7) и (3).

Чтобы проще было решать задачу расставим на рисунке сначала знаки плюс и минус, обозначающие знак производной. Потом стрелки – обозначающие возрастание, убывания функции.

Начнем с (-13): до (-13) производная положительна т.е. функция растет, после — производная отрицательна т.е. функция падает. Если это представить, то становится ясно, что (-13) – точка максимума.

(-11): производная сначала положительна, а потом отрицательна, значит функция возрастает, а потом убывает. Опять попробуйте это мысленно нарисовать и вам станет очевидно, что (-11) – это минимум.

(- 9): функция возрастает, а потом убывает – максимум.

Все вышесказанное можно обобщить следующими выводами:

— Функция имеет максимум там, где производная равна нулю и меняет знак с плюса на минус.
— Функция имеет минимум там, где производная равна нулю и меняет знак с минуса на плюс.

Как найти точки максимумов и минимумов если известна формула функции (12 задание ЕГЭ)?

Чтобы ответить на этот вопрос, нужно делать все то же, что и в предыдущем пункте: находить где производная положительна, где отрицательна и где равна нулю. Чтобы было понятнее напишу алгоритм с примером решения:

  1. Найдите производную функции (f'(x)).
  2. Найдите корни уравнения (f'(x)=0).
  3. Нарисуйте ось (x) и отметьте на ней точки полученные в пункте 2, изобразите дугами промежутки, на которые разбивается ось. Подпишите над осью (f'(x)), а под осью (f(x)).
  4. Определите знак производной в каждом промежутке (методом интервалов).
  5. Поставьте знак производной в каждом промежутке (над осью), а стрелкой укажите возрастание (↗) или убывание (↘) функции (под осью).
  6. Определите, как изменился знак производной при переходе через точки, полученные в пункте 2:
    — если (f’(x)) изменила знак с «(+)» на «(-)», то (x_1) – точка максимума;
    — если (f’(x)) изменила знак с «(-)» на «(+)», то (x_3) – точка минимума;
    — если (f’(x)) не изменила знак, то (x_2) – может быть точкой перегиба.
Читайте также:  Как быстро обжимать витую пару

Всё! Точки максимумов и минимумов найдены.

Изображая на оси точки в которых производная равна нулю – масштаб можно не учитывать. Поведение функции можно показать так, как это сделано на рисунке ниже. Так будет очевиднее где максимум, а где минимум.

Пример(ЕГЭ). Найдите точку максимума функции (y=3x^5-20x^3-54).
Решение:
1. Найдем производную функции: (y’=15x^4-60x^2).
2. Приравняем её к нулю и решим уравнение:

3. – 6. Нанесем точки на числовую ось и определим, как меняется знак производной и как движется функция:

Теперь очевидно, что точкой максимума является (-2).

Знание — сила. Познавательная информация

График производной функции

Задания, в которых на рисунке изображен график производной функции y=f ‘(x), и нужно определить точки экстремума и промежутки монотонности функции y=f(x), решаются очень просто.

Достаточно помнить, что

1) функция y=f(x) возрастает на промежутках, где производная y=f ‘(x)>0;

2) функция y=f(x) убывает на промежутках, где производная y=f ‘(x) внутренних точек области определения, то есть точки на концах области определения не рассматриваем);

4) функция y=f(x) имеет точки экстремума там, где производная y =f ‘(x) меняет свой знак.

В частности, функция y=f(x) имеет точки максимума там, где производная меняет знак с плюса на минус;

функция y=f(x) имеет точки минимума там, где производная меняет знак с с минуса на плюс.

На рисунке изображен график производной функции. С помощью графика найти промежутки монотонности функции, критические точки, критические точки и точки экстремума.

рис.1. По графику производной исследовать функцию.

Функция y=f(x) возрастает на промежутках (x1;x3) и (x4;x5) (то есть там, где производная y=f ‘(x) положительна, а значит, ее график расположен выше оси оx). Точку x2 не исключаем из промежутка возрастания — производная в этой точке равна нулю, но знак не меняет.

Читайте также:  Как найти понравившееся в инстаграм

Функция y=f(x) убывает на промежутке (x3;x4) (то есть там, где производная y=f ‘(x) отрицательна, а значит, ее график расположен ниже оси оx).

Критические точки: x2, x3, x4. В этих точках производная обращается в нуль (а график производной, соответственно, пересекает ось ox).

x=x3 — точка максимума функции y=f(x), поскольку производная y=f ‘(x) в этой точке меняет знак с плюса на минус (график производной пересекает ox в направлении сверху вниз).

x=x4 — точка минимума функции y=f(x), так как производная y=f ‘(x) в этой точке меняет знак с минуса на плюс (график производной пересекает ox в направлении снизу вверх).

Точки экстремума: x3 и x4. В них производная не только обращается в нуль, но и меняет свой знак. Точка x=x2 — критическая, но точкой экстремума не является поскольку нет смены знака производной. То есть точки экстремума на графике производной — это те точки в которых график не касается, а пересекает ось ox.

рис.2. По графику производной исследовать функцию

Функция y=f(x) возрастает на промежутках (x2;x3) и (x4;x5).

Функция y=f(x) убывает на промежутках (x1;x2) и (x3;x4).

Критические точки: x2, x3, x4.

Точка максимума — x=x3.

Точки минимума — x=x2 и x=x4.

С помощью графика производной y=f ‘(x)также можно сравнивать значения функции y=f(x). Такие задания рассмотрим позже.

9 комментариев на «График производной функции»

Неплохо, все просто и понятно!

Превосходно!
Напишите пожалуйста аналогичную статью о второй производной!

Спасибо!
Постараюсь о второй производной написать на следующей неделе.

Ссылка на основную публикацию
Выбор ноутбука до 15000
На начало 2018 года найти нормальный ноутбук за 15000 рублей тяжело ‒ за эту сумму в основном доступны слабые модели,...
Вакуумные пинцеты для микроэлектроники
Цена: 24.99$ (брал за 22.49$) Перейти в магазин В прошлом своем обзоре я упоминал в комментариях, что пользуюсь в качестве...
Вакуумный упаковщик для продуктов домашний рейтинг
Мы подводим определенные (конечно же, не финальные, а промежуточные) итоги нашим многочисленным тестам и продолжаем цикл материалов, посвященных выбору различных...
Выбор тихого корпуса для компьютера
Как выбрать корпус для ПК – самый важный параметр Когда возникает вопрос, какой корпус выбрать для компьютера, нужно определиться с...
Adblock detector