Как представить обыкновенную дробь в виде десятичной

Как представить обыкновенную дробь в виде десятичной

Ответ или решение 1

Переведём дробь 1/2 в десятичное число. Записываем полученное решение.

Для того чтобы перевести дробь в перевести в десятичное число нужно разделить числитель на знаменатель. В результате получается следующее решение.

В результате получается десятичная дробь равная 0,5.

Сегодня мы рассмотрим довольно простой алгоритм, с помощью которого можно легко переводить обычные дроби в десятичные. Это одна из самых часто встречающихся арифметических задач.

Несмотря на кажущуюся простоту, этот урок будет одинаково полезен как для младших классов, где только начинают работать с дробями, так и для 11−классников, которым предстоит сдавать ЕГЭ по математике.

Алгоритм состоит из трех шагов:

  1. Разложить знаменатель исходной дроби на множители;
  2. Сделать так, чтобы количество «2» и «5» совпадало;
  3. Записать полученную дробь в виде десятичной.

Вот и все! Каждый шаг подробно описан в видеоуроке.

Конечно, это далеко не самый быстрый и красивый алгоритм. Но когда я разрабатывал этот алгоритм, главной целью была не скорость, а надежность. Потому что на экзамене вам будет не до красоты. Намного важнее будет получить гарантированно правильный результат. И если работать по этому алгоритму, вероятность допустить ошибку сводится к нулю. Пользуйтесь!

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается конечной или бесконечной десятичной дробью.

Пример 1. Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5, записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5 . В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

Читайте также:  Как отсканировать фото в формате jpg

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10= 2 · 5 ; 100= 2 · 5 · 2 · 5 ; 1000= 2 · 5 · 2 · 5 · 2 · 5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Пример 2. Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой. Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2. Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае а) ( пример 2 ) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) ( пример 2 ) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

Читайте также:  Как заблокировать номер в вайбере на айфоне

В случае в) ( пример 2 ) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) ( пример 1 ) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66. запишется так: 0,(6) . Читают: нуль целых, шесть в периоде.

Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5, обращается в смешанную периодическую дробь.

Пример 3. Записать в виде десятичной дроби числа:

Любое рациональное число можно записать в виде бесконечной периодической десятичной дроби.

Пример 4. Записать в виде бесконечной периодической дроби числа:

Ссылка на основную публикацию
Как поставить старую версию скайпа
Программа Skype, как и любой другой активно развивающийся софт, постоянно обновляется. Однако не всегда новые версии выглядят и работают лучше...
Как повернуть диаграмму на 90 градусов
Научимся вращать (поворачивать) график функции относительно начала координат. Для примера используем график функции y=x*sin(10*x). Координаты (x'; y') в результате поворота...
Как повернуть купольную камеру видеонаблюдения
Страница 12 5 Регулировка положения видеокамеры Положение купольной видеокамеры можно регулировать по двум осям. Следя за изображением на мониторе, отрегулируйте...
Как поставить фотографию на контакт в андроид
На любом смартфоне реализована возможность установки изображения на телефонный контакт. Оно будет отображаться при поступлении входящих звонков от этого контакта...
Adblock detector