Как рассчитать равнодействующую силу

Как рассчитать равнодействующую силу

О причинах изменений

Классическая механика разделена на два раздела – кинематику, при помощи уравнений описывающую траекторию движения тел, и динамику, которая разбирается с причинами изменения положения объектов или самих объектов.

Причиной изменений выступает некоторая сила, которая есть мера действия на тело других тел или силовых полей (например, электромагнитное поле или гравитация). К примеру, сила упругости вызывает деформацию тела, сила тяжести – падение тел на Землю.

Сила – это векторная величина, то есть, ее действие – направленное. Модуль силы в общем случае пропорционален некоему коэффициенту (для деформации пружины – это ее жесткость), а также параметрам действия (масса, заряд).

Сложение сил

В случае, когда на тело действует n сил, говорят о равнодействующей силе, а формула второго закона Ньютона принимает вид:

$mvec a = sumlimits_^n vec F_i$.

Рис. 1. Равнодействующая сил.

Поскольку F – векторная величина, сумма сил называется геометрической (или векторной). Такое сложение выполняется по правилу треугольника или параллелограмма, либо по компонентам. Поясним каждый метод на примере. Для этого запишем формулу равнодействующей силы в общем виде:

$F = sumlimits_^n vec F_i$

А силу $F_i$ представим в виде:

Тогда суммой двух сил будет новый вектор $F_ = (F_ + F_, F_ + F_, F_ + F_)$.

Рис. 2. Покомпонентное сложение векторов.

Абсолютное значение равнодействующей можно рассчитать так:

Теперь дадим строгое определение: равнодействующая сила есть векторная сумма всех сил, оказывающих влияние на тело.

Разберем правила треугольника и параллелограмма. Графически это выглядит так:

Рис. 3. Правило треугольника и параллелограмма.

Внешне они кажутся различными, но когда доходит до вычислений, сводятся к нахождению третьей стороны треугольника (или, что тоже самое, диагонали параллелограмма) по теореме косинусов.

Если сил больше двух, иногда удобней пользоваться правилом многоугольника. По своей сути – это всё тот же треугольник, только повторенный на одном рисунке некоторое количество раз. В случае, если по итогу контур получился замкнутым, общее действие сил равно нулю и тело покоится.

Задачи

  • На ящик, размещенный в центре декартовой прямоугольной системы координат, действуют две силы: $F_1 = (5, 0)$ и $F_2 = (3, 3)$. Рассчитать равнодействующую двумя методами: по правилу треугольника и при помощи покомпонентного сложения векторов.

Решение

Равнодействующей силой будет векторная сумма $F_1$ и $F_2$.

$vec F = vec F_1 + vec F_2 = (5+3, 0+3) = (8, 3)$
Абсолютное значение равнодействующей силы:

Теперь получим тоже значение при помощи правила треугольника. Для этого сначала найдем абсолютные значения $F_1$ и $F_2$, а также угол между ними.

Угол между ними – 45˚, так как первая сила параллельна оси Оx, а вторая делит первую координатную плоскость пополам, то есть является биссектрисой прямоугольного угла.

Теперь, разместив вектора по правилу треугольника, рассчитаем по теореме косинусов равнодействующую:

  • На машину действуют три силы: $F_1 = (-5, 0)$, $F_2 = (-2, 0)$, $F_1 = (7,0)$. Какова их равнодействующая?

Решение

Достаточно сложить иксовые компоненты векторов:

Что мы узнали?

В ходе урока было введено понятие равнодействующей сил и рассмотрены различные методы ее расчета, а также введена запись второго закона Ньютона для общего случая, когда количество сил неограниченно.

Силу, заменяющую собой действие на тело нескольких сил, называют равнодействующей ; равнодействующая сила равна векторной сумме сил, приложенных к данному телу:

F → = F → 1 + F → 2 + . + F → N ,

где F → 1 , F → 2 , . F → N — силы, приложенные к данному телу.

Равнодействующую двух сил удобно находить графически по правилу параллелограмма (рис. 2.14, а ) или треугольника (рис. 2.14, б ).

Для сложения нескольких сил (вычисления равнодействующей) используют следующий алгоритм :

1) вводят систему координат и записывают проекции всех сил на координатные оси:

F 1 x , F 2 x , . F Nx ,

F 1 y , F 2 y , . F Ny ;

2) вычисляют проекции равнодействующей как алгебраическую сумму проекций сил:

F x = F 1 x + F 2 x + . + F Nx ,

F y = F 1 y + F 2 y + . + F Ny ;

3) модуль равнодействующей вычисляют по формуле

F = F x 2 + F y 2 .

Рассмотрим частные случаи равнодействующей.

Силу взаимодействия тела с горизонтальной опорой , по которой может происходить движение тела, рассчитывают как равнодействующую силы трения и силы реакции опоры (рис. 2.15):

F → вз = F → тр + N → ,

ее модуль вычисляется по формуле

F вз = F тр 2 + N 2 ,

где F → тр — сила трения скольжения или покоя; N → — сила реакции опоры.

Частные случаи равнодействующей:

Силу взаимодействия тела с комбинированной опорой (например, креслом автомобиля, самолета и т.п.) рассчитывают как равнодействующую сил давления на вертикальную и горизонтальную части опоры (рис. 2.16):

F → вз = F → гор + F → верт ,

где F → гор — сила давления, действующая на тело со стороны горизонтальной части опоры (численно равная весу тела); F → верт — сила давления, действующая на тело со стороны вертикальной части опоры (численно равная силе инерции).

Частные случаи равнодействующей:

Равнодействующая силы тяжести и силы Архимеда называется подъемной силой (рис. 2.17):

F → под = F → А + m g → ,

ее модуль вычисляется по формуле

F под = F А − m g ,

где F → А — сила Архимеда (выталкивающая сила); m g → — сила тяжести.

Частные случаи равнодействующей:

Читайте также:  Как флудить в чате варфейс

Если под влиянием нескольких сил тело равномерно движется по окружности, то равнодействующая всех приложенных к телу сил является центростремительной силой (рис. 2.18):

F → ц .с = F → 1 + F → 2 + . + F → N .

где F → 1 , F → 2 , . F → N — силы, приложенные к телу.

Модуль центростремительной силы, направленной по радиусу к центру окружности, может быть вычислен по одной из формул:

F ц .с = m v 2 R , F ц .с = m ω 2 R , F ц .с = m v ω ,

где m — масса тела; v — модуль линейной скорости тела; ω — величина угловой скорости; R — радиус окружности.

Пример 21. По дну водоема, наклоненному под углом 60° к горизонту, начинает скользить тело массой 10 кг, полностью находящееся в воде. Найти модуль равнодействующей всех сил, приложенных к телу, если между телом и дном водоема воды нет, а коэффициент трения составляет 0,15.

Решение. Так как между телом и дном водяная прослойка отсутствует, то сила Архимеда на тело не действует.

Искомой величиной является модуль векторной суммы всех сил, приложенных к телу:

F → = F → тр + m g → + N → ,

где N → — сила нормальной реакции опоры; m g → — сила тяжести; F → тр — сила трения. Указанные силы и система координат изображены на рисунке.

Вычисление модуля результирующей силы F проведем в соответствии с алгоритмом.

1. Определим проекции сил, приложенных к телу, на координатные оси:

проекция силы трения

F тр x = − F тр = − μ N ;

проекция силы тяжести

( m g ) x = m g sin 60 ° = 0,5 3 m g ;

проекция силы реакции опоры

проекция силы трения

проекция силы тяжести

( m g ) y = − m g cos 60 ° = − 0,5 m g ;

проекция силы реакции опоры

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения.

2. Вычислим проекции равнодействующей на координатные оси, суммируя соответствующие проекции указанных сил:

F x = F тр x + ( m g ) x = − μ N + 0,5 3 m g ;

F y = ( m g ) y + N y = − 0,5 m g + N .

Движение по оси Oy отсутствует, т.е. F y = 0, или, в явном виде:

Отсюда следует, что

что позволяет получить формулу для расчета силы трения:

F тр = μ N = 0,5 μ m g .

3. Искомое значение равнодействующей:

F = F x 2 + F y 2 = | F x | = − 0,5 μ m g + 0,5 3 m g = 0,5 m g ( 3 − μ ) .

F = 0,5 ⋅ 10 ⋅ 10 ( 3 − 0,15 ) = 79 Н.

Пример 22. Тело массой 2,5 кг движется горизонтально под действием силы, равной 45 Н и направленной под углом 30° к горизонту. Определить величину силы взаимодействия тела с поверхностью, если коэффициент трения скольжения равен 0,5.

Решение. Силу взаимодействия тела и опоры найдем как равнодействующую силы трения F → тр и силы нормальной реакции опоры N → :

F → вз = F → тр + N → ,

модуль которой определяется формулой

F вз = F тр 2 + N 2 .

Силы, приложенные к телу, показаны на рисунке.

Модуль силы нормальной реакции опоры определяется формулой

N = m g − F sin 30 ° ,

а модуль силы трения скольжения —

где m — масса тела; g — модуль ускорения свободного падения; µ — коэффициент трения; F — модуль силы, вызывающей движение тела.

С учетом выражений для N и F тр формула для расчета искомой силы принимает вид:

F вз = ( μ N ) 2 + N 2 = N μ 2 + 1 = ( m g − F sin 30 ° ) μ 2 + 1 .

F вз = ( 2,5 ⋅ 10 − 45 ⋅ 0,5 ) ( 0,5 ) 2 + 1 ≈ 2,8 Н.

Пример 23. Во сколько раз изменится подъемная сила, если с аэростата сбросить балласт, равный половине его массы? Плотность воздуха считать равной 1,3 кг/м 3 , массу аэростата с балластом — 50 кг. Объем аэростата составляет 50 м 3 .

Решение. Подъемная сила, действующая на аэростат, является равнодействующей силы Архимеда F → А и силы тяжести m g → :

F → под = F → А + m g → ,

модуль которой определяется формулой

где F A = ρ возд gV — модуль силы Архимеда; ρ возд — плотность воздуха; g — модуль ускорения свободного падения; V — объем аэростата; m — масса аэростата (с балластом или без него).

Модуль подъемной силы может быть рассчитан по формулам:

  • для аэростата с балластом

F под 1 = ρ возд g V − m 1 g ,

  • для аэростата без балласта

F под 2 = ρ возд g V − m 2 g ,

где m 1 — масса аэростата с балластом; m 2 — масса аэростата без балласта.

Искомое отношение модулей подъемных сил составляет

F под 2 F под 1 = ρ возд V − m 2 ρ возд V − m 1 = 1,3 ⋅ 50 − 25 1,3 ⋅ 50 − 50 ≈ 2,7 .

Пример 24. Модуль равнодействующей всех сил, действующих на тело, равен 2,5 Н. Определить в градусах угол между векторами скорости и ускорения, если известно, что модуль скорости остается постоянным.

Решение. Скорость тела не изменяется по величине. Следовательно, тело обладает только нормальной составляющей ускорения a → n ≠ 0 . Такой случай реализуется при равномерном движении тела по окружности.

Равнодействующая всех сил, приложенных к телу, является центростремительной силой и показана на рисунке.

Векторы силы, скорости и ускорения имеют следующие направления:

  • центростремительная сила F → ц .с направлена к центру окружности;
  • вектор нормального ускорения a → n направлен так же, как и сила;
  • вектор скорости v → направлен по касательной к траектории движения тела.

Следовательно, искомый угол между векторами скорости и ускорения равен 90°.

Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геометрическим способом.

Читайте также:  Как сделать рамку на титульнике

Выберем систему координат, определим пропорции всех заданных векторов на эти оси (рис. 3.4, а).

Складываем проекции всех векторов на оси х и у (рис. 3.4, б).

Модуль (величину) равнодействующей можно найти по известным проекциям:

Направление вектора равнодействующей можно определить по величинам и знакам косинусов углов, образуемых равнодействующей с осями координат (рис. 3.5).

Условия равновесия плоской системы сходящихся сил в аналитической форме

Исходя из того, что равнодействующая равна нулю, получим:

Условия равновесия в аналитической форме можно сформули­ровать следующим образом:

Плоская система сходящихся сил находится в равновесии, ес­ли алгебраическая сумма проекций всех сил системы на любую ось равна нулю.

Система уравнений равновесия плоской сходящейся системы сил:

В задачах координатные оси выбирают так, чтобы решение было наиболее простым. Желательно, чтобы хотя бы одна неизвестная сила совпадала с осью координат.

Примеры решения задач

Пример 1. Определить величины и знаки проекций представленных на рис. 3.6 сил.

Решение

Пример 2. Определить величину и направление равнодействующей плоской системы сходящихся сил аналитическим способом.

Решение

1.

Определяем проекции всех сил системы на Ох (рис. 3.7, а):

Сложив алгебраически проекции, получим проекцию равнодействующей на ось Ох.

Fx = 8,66 – 20 + 10,6 = — 0,735 кН

Знак говорит о том, что равнодействующая направлен влево.

2.

Определяем проекции всех сил на ось Оу значения проекций, получим величину проекции Оу.

Сложив алгебраически значения проек­ций, получим величину проекции равнодей­ствующей на ось Оу.

Знак проекции соответствует на­правлению вниз. Следовательно, равно­действующая направлена влево и вниз (рис. 3.7б).

3. Определяем модуль равнодействую­щей по величинам проекций:

4. Определяем значение угла равнодействующей с осью Ох:

и значение угла с осью Оу:

Пример 3. Система трех сил находится в равновесии. Известны проекции двух сил системы на взаимно перпендикулярные оси Ох и )у:

Определить, чему равна и как направлена третья сила системы.

Решение

1. Из уравнений равновесия системы определяем:

2.

По полученным величинам проекций определяем модуль силы:

Направление вектора силы относитель­но оси Ох (рис. 3.8):

Угол с осью Ох будет равен

Пример 4. Определить величину и направление реакций свя­зей для схемы, приведенной на рисунке, а под действием груза G = 30 кН. Проверить правильность определения реакций.

Решение

1. В задаче рассматривается равновесие тела, опи­рающегося на плоскость и подвешенного на нити. Заменим тело точкой , совпадающей с центром тяжести.

2. Приложим к точке активную силу, которой является соб­ственный вес тела G. Направим ее вниз (рис. б).

3. Мысленно отбросим связи — плоскость и нить. Заменим их действие на точку 0 реакциями связей. Реакция плоскости (обо­значим ее R) проходит по нормали к плоскости в точке А, а ре­акция или усилие в нити (обозначим ее S) — по нити от точки. Обе реакции и вес тела или линии их действия должны пересе­каться в точке 0.

Изобразим действующие силы в виде системы трех сходя­щихся сил на отдельном чертеже (рис. в).

4. Выберем положение системы координат. Начало координат совмещаем с точкой 0. Ось х совмещаем с направлением линии действия реакции R, а ось у направим перпендикулярно оси х (рис. г). Определим углы между осями координат и реакциями R и S. Обычно рис. б и в не выполняют отдельно, а сразу от рис. а переходят к рис. г. Можно было ось у совместить с усилием S, и ось х направить по углом 90°, тогда решение было бы другим.

5. Составим сумму проекций всех сил на оси координат:

Решим систему уравнений. Из второго уравнения находим

Из первого уравнения находим

6.Проверим решение, для чего расположим оси координат, как показано на рис. д. Составим уравнения равновесия для вновь принятых осей:

Решим систему уравнений способом подстановки.

Из первого уравнения найдем R:

Подставим это выражение во второе уравнение:

Очевидно, что при расположении осей, как показано на рис. д, вычисления оказались более сложными.

Ответ: R = 11,84 кН; S = 22,21 кН.

Пример 5. Определить усилия в нити и стержне кронштейна, показанного на рис. а, если G = 20 кН.

Решение

1. Рассмотрим равновесие точки А (или узла А), в которой сходятся все стержни и нити.

2. Активной силой является вес груза G, направленный вниз (рис. б).

3. Отбросим связи: стержень и нить. Усилие в нити обозна­чим Sx и направим от точки А, так как нить может испытывать только растяжение. Усилие в стержне обозначим S2 и тоже на­правим от точки А, предполагая что стержень АС растянут (рис. б).

Выполним на отдельном чертеже схему действия сил в точке А (рис. в).

4. Выберем положение системы координат. Начало коорди­нат совмещаем с точкой А (рис. г). Ось х совмещаем с лини­ей действия усилия S, а ось у располагаем перпендикулярно оси х. Укажем углы между осями координат и усилиями S1S2.

Читайте также:  Как вывести деньги со счета стима

5. Составим уравнения равновесия.

Из второго уравнения находим

Из первого уравнения находим

Знак «минус» перед S2 свидетельствует о том, что стержень АС не растянут, как предполагалось, а сжат.

6. Проверку решения предлагаем выполнить самостоятельно, расположив оси координат так, как показано на рис. д.

Ответ: S1 = 15,56 кН, S2 = — 29,24 кН (при принятом на черте­же направлении усилий).

Величина усилий зависит от углов наклона стержня и нити. Например, если на рис. а угол 70° заменить на 60°, сохранив угол 30°, то усилия будут равны: S1= 20 кН, S2 = — 34,64 кН. А при угле 50° S1 = 29,26 кН, S2 = — 44,8 кН. Оба усилия растут и становятся больше веса груза.

Пример 6. Как изменятся усилия в стержне и нити, если груз будет перекинут через блок, как показано на рис. а?

Остальные данные — в примере 5.

Решение

1. Рассматриваемой тонкой остается точка А.

2. Активная сила (вес груза G) действует на точку горизонтально слева направо, так как груз перекинут через блок.

3. Усилия S1 и S2 прикладываем к точке А, как в примере 2.

4. Выбираем систему координат, как показано на рис. б.

5. Составляем и решаем уравнения равновесия:

Из первого уравнения находим

Из второго уравнения находим

Ответ: S1 = 26,94 кН; S2 = — 10,64 кН при принятом направлении усилий на чертеже. Усилие S1 увеличилось, S2 — уменьшилось, а знаки не изменились.

Пример 7. Определить усилия в стержнях (рис. а). Массой стержней пренебречь.

Решение

В соответствии с последовательностью действий, будем рассматривать равновесие узла А к которому приложены заданные нагрузки (Р, 2Р, 3Р) и искомые реакции стержней АВ и АС.

Освободим узел А от связей, заменим их действие искомыми реакциями NАС, NAB(рис. в). Получили плоскую систему сходящихся сил.

Выбираем систему координат (рис. г).

Сила NAB перпендикулярна оси v, сила NАС — оси и; поэтому в каждое уравнение равновесия войдет лишь одна неизвестная сила:

Силы NAB и NАС получились положительными; это значит, что предполагаемые направления сил совпадают с действительными.

На рис. д показаны силы, действующие на узел (реакции стержней), и силы, действующие на стержни (усилия в стержнях или реакции узла).

Решим тот же пример графическим методом.

Полученная система сил (см. рис. в) находится в равновесии, и, следовательно, силовой многоугольник, построенный для этой системы сил, должен быть замкнутым.

Строим силовой многоугольник. Выбираем масштаб (рис. е). От точки О (рис. ж) в выбранном масштабе откладываем сначала силу Р, затем от конца вектора Р — силу 2Р, после чего от конца вектора 2Р — силу ЗР. Масштаб следует выбрать достаточно крупный, с тем чтобы при измерении отрезков (векторов), изображающих искомые силы, можно было получить их значения без большой погрешности. Через точку b проводим линию, параллельную стержню АС, и через точку О — линию, параллельную стержню АВ. Отрезки ОС и CB представляют собой искомые усилия. Направления задан­ных сил известны; стрелки, изображающие направления искомых сил, ставим таким образом, чтобы в векторном многоугольнике было единое на­правление обхода — в данном случае против часовой стрелки. Измерив отрезки к и Ос в со­ответствии с выбранным мас­штабом, находим абсолютные величины реакций; NAcza,2P Nab

Решение примера выполнено двумя способами, которые (в пределах точности построений) дали совпадающие результаты. Очевидно, здесь никакой допол­нительной проверки решения не требуется.

Пример 8. Определить предельное значение угла а, при котором груз А (рис. а) будет находиться в по­кое. Плоскость ВС считать абсолютно гладкой.

Решение

Силы, действующие на груз А, представляют собой плоскую систему сходящихся сил. NBC — реакция наклонной плоскости.

Если груз А находится в покое, то ∑Pto = 0, т.е.

Контрольные вопросы и задания

1. Запишите выражение для расчета проекции силы F на ось Оу (рис. 3.9).

2. Определите сумму проекций сил системы на ось Ох (рис. 3.10).

4. Определите величину силы по известным проекциям:

5.

Груз находится в равновесии (рис. 3.11). Какая система урав­нений равновесия для шарнира А записана верно?

Указания.

1. При ответе на вопросы 1 и 2 необходимо знать, что в выраже­ние для величины проекции силы на ось подставляется угол между вектором силы и положительной полуосью координат. Не забыть, что определяется алгебраическая сумма.

2. При ответе на вопрос 4 сначала следует определить возмож­ные направления реакций в стержнях, мысленно убирая по очереди стержни и рассматривая возможные перемещения (см. лекцию 1).

Затем записать алгебраические суммы проекций сил на оси Ох и Оу. Полученные уравнения сравнить с приведенными.

5. Ответьте на вопросы тестового задания.

Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

Ссылка на основную публикацию
Как поставить старую версию скайпа
Программа Skype, как и любой другой активно развивающийся софт, постоянно обновляется. Однако не всегда новые версии выглядят и работают лучше...
Как повернуть диаграмму на 90 градусов
Научимся вращать (поворачивать) график функции относительно начала координат. Для примера используем график функции y=x*sin(10*x). Координаты (x'; y') в результате поворота...
Как повернуть купольную камеру видеонаблюдения
Страница 12 5 Регулировка положения видеокамеры Положение купольной видеокамеры можно регулировать по двум осям. Следя за изображением на мониторе, отрегулируйте...
Как поставить фотографию на контакт в андроид
На любом смартфоне реализована возможность установки изображения на телефонный контакт. Оно будет отображаться при поступлении входящих звонков от этого контакта...
Adblock detector