Как рассчитать траекторию снаряда

Как рассчитать траекторию снаряда

Свободным полётом снаряда называется фаза его движения после выстрела до попадания в твёрдое препятствие (цель, грунт) или до дистанционного подрыва. В этом процессе на снаряд действуют только сила тяжести и силы, возникающие при движении тела в газообразной среде (атмосфере Земли). В общем случае в атмосфере Земли также могут существовать упорядоченные движения масс воздуха (ветер), которые оказывают определённое влияние на полёт снаряда.

Так как размеры снаряда много меньше преодолеваемой им дистанции, то его движение можно рассматривать как движение материальной точки по кривой, называемой траекторией полёта. Однако для определения всех сил, действующих на снаряд в полёте, приближения материальной точки недостаточно; необходимо рассмотрение снаряда как тела с конечными размерами [1] .

Принято считать за траекторию полёта снаряда кривую, которую при движении описывает его центр масс. Эта кривая также имеет название баллистической. В самом общем случае она не является ни прямой, ни параболической, ни даже плоской. Как правило, форма этой кривой задаётся таблично по результатам опытных стрельб при нормальных условиях, а впоследствии по большому статистическому материалу строится эмпирическая модель для этой траектории. Однако в ряде предельных случаев форма баллистической кривой может быть близка к одному из упомянутых выше случаев.

Согласно первому закону Ньютона, при отсутствии действия на снаряд внешних сил он будет двигаться прямолинейно и равномерно. Такая ситуация возможна при стрельбе из артиллерийских орудий в глубоком космосе, вдали от источников тяготения при пренебрежимо малом сопротивлении межзвёздной среды. Однако такая возможность на текущий момент возможна лишь в фантастической литературе.(Хотя в теории это возможно при установке в снаряд миниатюрного ракетного двигателя, но при этом увеличивается себестоимость и габариты снаряда, так-что это не выгодно. При движении снаряда в гравитационном поле с начальной скоростью, неколлинеарной вектору напряжённости этого поля, траектория снаряда будет кривой линией. Если гравитационное поле однородно и сопротивление среды отсутствует, то баллистическая кривая принимает форму параболы. Это может выполниться при стрельбе на небольшую дальность на поверхности крупного небесного тела, не обладающего атмосферой, например Луны. Для земных условий это приближение как правило не выполняется — даже снаряды весьма маломощных орудий испытывают большие силы сопротивления со стороны воздуха. Поэтому даже для таких орудий параболическая форма траектории является очень грубым приближением. При стрельбе в условиях неоднородного гравитационного поля в отсутствие сопротивления среды форма траектории может быть любой, даже замкнутой. Подобные опыты проводились на одной из советских орбитальных станций серии "Салют", оснащённой малокалиберной авиационной скорострельной пушкой конструкции А.Э.Нудельмана. Большого военного значения они не имели, но наблюдения за выпущенными снарядами и их вхождением в атмосферу Земли под различными углами помогли в совершенствовании наблюдательных методик метеорной астрономии.

Для сугубо земных практических условий стрельбы снаряд выпускается под некоторым углом бросания к горизонту и во время его движения на него действуют сила тяжести и аэродинамическая сила. Первая направлена к земной поверхности и сообщает снаряду ускорение, направленное вертикально вниз. Так как снаряд представляет собой тело сложной геометрической формы, то её точкой приложения является центр масс снаряда. Положение центра масс зависит от формы снаряда и распределения масс внутри него.

Аэродинамическая сила относительно вектора скорости снаряда традиционно разбивается на две составляющие — силу сопротивления среды, направленную точно против вектора скорости и подъёмную (или прижимающую) силу в поперечном направлении к вектору скорости. Последняя компонента не оказывает заметного влияния на полёт снаряда и на практике ею можно пренебречь (так как снаряд имеет симметричную форму, а угол атаки α снаряда весьма невелик). Точкой приложения этой силы к снаряду является так называемый центр давления, обычно не совпадающий с центром масс. Положение центра давления зависит только от формы снаряда.

Как следствие возникает момент сил, стремящийся опрокинуть снаряд и заставить его кувыркаться в воздухе. Кувыркание снаряда на несколько порядков повышает силу сопротивления среды и резко уменьшает дальность стрельбы. Для борьбы с этим явлением применяются следующие методы: оснащение снаряда оперением, придание снаряду вращения вдоль оси симметрии или изготовление снаряда в форме шара. Последнее широко применялось в артиллерии XIV-XVIII веков — сферическая форма снаряда сама по себе исключает кувыркание, а сила сопротивления движению не зависит от ориентации снаряда в пространстве. Однако сферическая форма очень невыгодна с аэродинамической точки зрения — большая сила сопротивления движению сводит на нет преимущества от отсутствия кувыркания. Поэтому в современной артиллерии применяются другие способы стабилизации снаряда в полёте. Для гладкоствольных орудий используются оперённые снаряды, у которых опрокидывающий момент компенсируется силами давления набегающего воздуха на элементы оперения. Вторым подходом является придание снаряду вращения вокруг оси симметрии посредством нарезов в канале ствола орудия. Как известно, вращающийся волчок стремится сохранить неизменным направление оси своего вращения. За счёт этого осуществляется стабилизация полёта, однако при этом возникает побочный эффект ухода снаряда в сторону закрутки — равнодействующая сил тяжести и сопротивления имеет ненулевую проекцию на ось вращения и ненулевое плечо относительно центра масс снаряда. В результате появляется боковая сила, действующая перпендикулярно плоскости, образованной осью вращения и равнодействующей сил тяжести и сопротивления (у гироскопа с шарнирно закреплённой осью эта же причина приводит к прецессии). Поэтому у снарядов нарезных орудий баллистическая кривая не является плоской кривой. Боковой уход нарезных снарядов — так называемая деривация — учитывается при стрельбе на большие дистанции путём внесения заранее затабулированных поправок в угол доворота орудия. Оперённые снаряды гладкоствольных орудий свободны от этого недостатка, для них баллистическая кривая при спокойной атмосфере является плоской.

Читайте также:  Как измерить пинг в игре

Важным фактором, влияющим на траекторию и, как следствие, дальность стрельбы является состояние атмосферы Земли — температура воздуха, его давление и скорость упорядоченного движения. Поправки на эти факторы учитываются в таблицах стрельбы в виде приращений к значениям элементов траектории при нормальных условиях стрельбы (температура воздуха +15 градусов Цельсия, давление 750 мм рт. ст., отсутствие ветра). Для противотанковых орудий достаточно знать метеоусловия в приземном слое атмосферы, но для гаубиц и дальнобойных пушек этого уже недостаточно — их снаряды в верхней точке баллистической кривой имеют высоту над поверхностью порядка 5-6 км. Температура, давление, направление и скорость ветра меняются с высотой сложным и не всегда предсказуемым образом. Поэтому для точной стрельбы проводят высотное зондирование атмосферы; по его данным вычисляют усреднённые, так называемые баллистические, параметры и по ним из таблиц стрельбы находят поправки на дальность и боковой ветровой снос снарядов. Следует отметить, что оперённые снаряды гладкоствольных орудий подвержены боковому ветровому сносу существенно сильнее, чем снаряды нарезных орудий.

При стрельбе на очень большие дистанции также необходимо учитывать тот факт, что Земля не является инерциальной системой отсчёта и в связанной с ней системе координат на снаряд в полёте действует сила Кориолиса (второй компонентой, связанной с неравномерностью вращения Земли можно пренебречь). Поэтому при наличии проекции скорости снаряда на направление "север — юг" будет некоторый снос снаряда в направлении "запад — восток". Этот фактор также учтён в таблицах стрельбы и методиках расчёта поправок.

Учёт всего комплекса описанных выше явлений входит составной частью в метод полной подготовки данных для стрельбы. Он позволяет заранее рассчитать все установки для стрельбы и нанести внезапный огневой удар по противнику без пристрелки и иной раз даже без помощи артиллерийской разведки. Соответственно минимизируется время нахождения на огневой позиции и вероятность успешной контрбатарейной стрельбы противника. С другой стороны, метод полной подготовки требует высокого уровня подготовки артиллеристов и понимания сущности всех учитываемых этим методом явлений и процессов.

1 К вопросу о движении артиллерийского снаряда / Амельянчик А.И., Горбач Н.И. // Международный научно-технический журнал / БНТУ. – Минск, 2009. – Выпуск 24: Теоретическая и прикладная механика. – С. 247–260.

2 Справочник по высшей математике / М.Я. Выгодский. — М.: ООО «Издательство Астрель» ACT , 2002. — 992 с: ил.

3 Яблонский, АА. Курс теоретической механики: учебник для техн. вузов / А.А. Яблонский. — 6-е изд. испр. — М.: Высш. шк., 1984-423 е.: ил.

4 Мещерский, И.В. Сборник задач по теоретической механике / И.В. Мещерский. — М.: «Наука», 1981. — 480 с.

5 Наставление по стрелковому делу. Воениздат, 1985, Москва, К-160, редактор В.М. Чайка.

Содержание

Основные понятия

Основной задачей стрельбы является попадание в цель. Для этого орудию необходимо придать строго определённое положение в вертикальной и горизонтальной плоскостях. Если навести орудие так, чтобы ось канала ствола была направлена на цель, то в цель мы не попадём, так как траектория полёта снаряда будет всегда проходить ниже направления оси канала ствола, снаряд до цели не долетит. Для формализации терминологического аппарата рассматриваемой тематики, введём основные определения, используемые при рассмотрении теории артиллерийской стрельбы.
Точкой вылета называется центр дульного среза орудия.

Точкой падения называется точка пересечения траектории с горизонтом орудия.

Горизонтом орудия называется горизонтальная плоскость, проходящая через точку вылета.

Линией возвышения называется продолжение оси канала ствола наведённого орудия.

Линией бросания ОВ называется продолжение оси канала ствола в момент выстрела. В момент выстрела орудие вздрагивает, вследствие чего снаряд бросается не по линии возвышения ОА, а по линии бросания ОВ (см. рис. 2).

Линией цели ОЦ называется линия, соединяющая орудие с целью (см. рис. 2).

Линией прицеливания (визирования) называется линия, идущая от глаза наводчика через оптическую ось прицела в точку наводки. При стрельбе прямой наводкой, когда линия прицеливания направлена в цель, линия прицеливания совпадает с линией цели.

Линией падения называется касательная к траектории в точке падения.

Углом возвышения (греческая фи) называется угол между линией возвышения и горизонтом орудия. Если ось канала ствола направлена ниже горизонта, то этот угол называется углом снижения (см. рис. 2).

Дальность стрельбы из орудия зависит от угла возвышения и условий стрельбы. Следовательно, чтобы добросить снаряд до цели, надо орудию придать такой угол возвышения, при котором дальность стрельбы будет соответствовать расстоянию до цели. В таблицах стрельбы указано какие углы прицеливания нужно придать орудию, чтобы снаряд полетел на нужную дальность.

Углом бросания (греческая тета ноль) называется угол между линией бросания и горизонтом орудия (см. рис. 2).

Углом вылета (греческая гамма) называется угол между линией бросания и линией возвышения. В морской артиллерии угол вылета имеет малую величину и его иногда в расчёт не принимают, полагая, что снаряд бросается под углом возвышения (см. рис. 2).

Углом прицеливания (греческая альфа) называется угол между линией возвышения и линией прицеливания (см. рис. 2).

Читайте также:  Как загрузить гугл плей на андроид

Углом места цели (греческая эпсилон) называется угол между линией цели и горизонтом орудия. При стрельбе корабля по морским целям угол места цели равен нулю, так как линия цели направлена по горизонту орудия (см. рис. 2).

Углом падения (греческая тета с латинской буквой с) называется угол между линией цели и линией падения (см. рис. 2).

Углом встречи (греческая мю) называется угол между линией падения и касательной к поверхности цели в точке встречи (см. рис. 2).
От значения величины этого угла сильно зависит стойкость брони корабля, по которому ведётся огонь, к пробитию снарядами. Очевидно, чем ближе этот угол к 90 градусам, тем вероятность пробития выше, верно и обратное.
Плоскостью стрельбы называется вертикальная плоскость, проходящая через линию возвышения. При стрельбе корабля по морским целям линия прицеливания направлена по горизонту, в этом случае угол возвышения равен углу прицеливания. При стрельбе корабля по береговым и воздушным целям угол возвышения равен сумме угла прицеливания и угла места цели (см. рис. 3). При стрельбе береговой батареи по морским целям угол возвышения равен разности угла прицеливания и угла места цели (см. рис. 4). Таким образом, величина угла возвышения равна алгебраической сумме угла прицеливания и угла места цели. Если цель выше горизонта, угол места цели имеет знак "+", если цель ниже горизонта, угол места цели имеет знак "-".

Влияние сопротивления воздуха на траекторию полёта снаряда

Траектория полёта снаряда в безвоздушном пространстве представляет собой симметричную кривую линию, называемую в математике параболой. Восходящая ветвь совпадает по форме с нисходящей ветвью и, следовательно, угол падения равен углу возвышения.

При полёте в воздухе снаряд расходует часть скорости на преодоление сопротивления воздуха. Таким образом, на снаряд в полёте действуют две силы — сила тяжести и сила сопротивления воздуха, которая уменьшает скорость и дальность полёта снаряда, как проиллюстрировано на рис. 5. Величина силы сопротивления воздуха зависит от формы снаряда, его размеров, скорости полёта и от плотности воздуха. Чем длиннее и заострённее головная часть снаряда, тем сопротивление воздуха меньше. Форма снаряда особенно сказывается при скоростях полёта, превышающих 330 метров в секунду (то есть при сверхзвуковых скоростях).

На рис. 6 слева представлен недальнобойный снаряд старого образца и более продолговатый, заострённый дальнобойный снаряд справа. Также видно, что у дальнобойного снаряда в донной части делается коническое сужение. Дело в том, что сзади снаряда образуется разреженное пространство и завихрения, которые значительно увеличивают сопротивление воздуха. Сужением дна снаряда достигается уменьшение величины сопротивления воздуха, возникающего вследствие разреженности и завихрений за снарядом.

Сила сопротивления воздуха пропорциональна скорости его полёта, но не прямо пропорциональна. Зависимость формализуется более сложно. Вследствие действия сопротивления воздуха у траектории полёта снаряда восходящая ветвь длиннее и отложе нисходящей. Угол падения больше угла возвышения.

Помимо уменьшения дальности полёта снаряда и изменения формы траектории, сила сопротивления воздуха стремится опрокинуть снаряд, как это видно из рис. 7.

Следовательно, невращающийся продолговатый снаряд под действием сопротивления воздуха будет переворачиваться. При этом снаряд может попасть в цель в любом положении, в том числе боком или дном, как показано на рис. 8.

Чтобы снаряд в полёте не переворачивался, ему придают вращательное движение с помощью нарезов в канале ствола.

Если же рассмотреть воздействие воздуха на вращающийся снаряд, то можно увидеть, что это приводит к боковому отклонению траектории от плоскости стрельбы, как изображено на рис. 9.

Деривацией называется отклонение снаряда от плоскости стрельбы вследствие его вращения. Если нарезы вьются слева вверх направо, то снаряд отклоняется вправо.

Влияние угла возвышения и начальной скорости снаряда на дальность его полёта

Дальность полёта снаряда зависит от углов возвышения, под которыми он бросается. Увеличение дальности полёта с увеличением угла возвышения происходит только до некоторого предела (40-50 градусов), при дальнейшем увеличении угла возвышения, дальность начинает уменьшаться.

Углом предельной дальности называется угол возвышения, при котором получается наибольшая дальность стрельбы при данной начальной скорости и снаряде. При стрельбе в безвоздушном пространстве наибольшая дальность полёта снаряда получается при угле возвышения 45 градусов. При стрельбе в воздухе величина угла предельной дальности отличается от этого значения и у разных орудий бывает неодинаковой (обычно меньше 45 градусов). Для сверхдальнобойной артиллерии, когда снаряд значительную часть пути летит на большой высоте в сильно разреженном воздухе, угол предельной дальности бывает более 45 градусов.

Для орудия данного образца и при стрельбе определенным типом боеприпаса каждому углу возвышения соответствует строго определенная дальность полёта снаряда. Следовательно, чтобы забросить снаряд на нужное нам расстояние, необходимо орудию придать угол возвышения, соответствующий этому расстоянию.

Траектории снарядов, выпущенных при углах возвышения меньших, чем угол предельной дальности, называются настильными траекториями.

Траектории снарядов, выпущенных при углах возвышения больших, чем угол предельной дальности, называются ‘навесными траекториями’.

Рассеивание снарядов

Если из одного и того же орудия, одинаковым боеприпасом, при одном и том же направлении ствола орудия, при одинаковых, на первый взгляд, условиях произвести несколько выстрелов, то снаряды не попадут в одну точку, а полетят по разным траекториям, образуя пучок траекторий, как проиллюстрировано на рис. 10. Это явление называется рассеиванием снарядов.

Читайте также:  Как повысить качество видео в obs

Причиной рассеивания снарядов является невозможность достижения абсолютно одинаковых условий для каждого выстрела. В таблице приведены основные факторы, вызывающие рассеивание снарядов и возможные пути уменьшения этого рассеивания.

Основные группы причин рассеивания Условия, порождающие причины рассеивания Меры борьбы за уменьшение рассеивания
1. Разнообразие начальных скоростей
  • Разнообразие свойств пороха (состав, содержание влаги и растворителя).
  • Разнообразие веса зарядов.
  • Разнообразие температуры зарядов.
  • Разнообразие плотности заряжания.

(размеры и расположение ведущего пояска, досылка снарядов).

  • Разнообразие формы и веса снарядов.
  • Хранение в герметической укупорке. Каждую стрельбу производить зарядами одной партии.
  • Поддержание должной температуры в погребе.
  • Единообразие заряжания.
  • Каждую стрельбу производить снарядами одного весового знака.
2. Разнообразие углов бросания
  • Разнообразие углов возвышения (мёртвые ходы в прицельном устройстве и в механизме вертикального наведения).
  • Разнообразие углов вылета.
  • Разнообразие наводки.
  • Тщательный уход за материальной частью.
  • Хорошая тренировка наводчиков.
3. Разнообразие условий в полёте снаряда

Разнообразие влияния воздушной среды (плотность, ветер).

Площадь, на которую падают снаряды, выпущенные из орудия при одном и том же направлении канала ствола, называется площадью рассеивания.

Середина площади рассеивания называется средней точкой падения.

Воображаемая траектория, проходящая через точку вылета и среднюю точку падения, называется средней траекторией.

Площадь рассеивания имеет форму эллипса, поэтому площадь рассеивания называется эллипсом рассеивания.

Интенсивность, с которой снаряды попадают в различные точки эллипса рассеивания, описывается двумерным Гауссовским (нормальным) законом распределения. Отсюда, если следовать в точности законам теории вероятностей, можно сделать вывод, что эллипс рассеивания является идеализацией. Процент попаданий снарядов внутрь эллипса описывается правилом трёх сигма, а именно, вероятность попадания снарядов в эллипс, величина оси которого равна утроенному квадратному корню из дисперсий соответствующих одномерных Гауссовских законов распределения равна 0.9973.
В силу того, что количество выстрелов из одного орудия, особенно крупного калибра, как уже было указано выше, в силу износа зачастую не превышает и одной тысячи, этой неточностью можно пренебречь и считать, что все снаряды попадают в эллипс рассеивания. Любое сечение пучка траекторий полёта снарядов также представляет собой эллипс. Рассеивание снарядов по дальности всегда больше, чем в боковом направлении и по высоте. Величину срединных отклонений можно найти в основной таблице стрельбы и по ней определить размеры эллипса.

Поражаемым пространством называется пространство, на протяжении которого траектория проходит через цель.

Согласно рис. 11, поражаемое пространство равно расстоянию по горизонту АС от основания цели до конца траектории, проходящей через вершину цели. Каждый снаряд, упавший вне поражаемого пространства, прошёл либо выше цели, либо упал до неё. Поражаемое пространство ограничивается двумя траекториями — траекторией ОА, проходящей через основание цели, и траекторией ОС, проходящей через верхнюю точку цели.

В случае, если поражаемая цель имеет глубину, величина поражаемого пространства увеличивается на величину глубины цели, как проиллюстрировано на рис. 12. Глубина цели будет зависеть от размеров цели и её положения относительно плоскости стрельбы. Рассмотрим цель, наиболее вероятную для морской артиллерии — судно неприятеля. В таком случае, если цель идёт от нас или на нас, глубина цели равна её длине, когда цель идёт перпендикулярно к плоскости стрельбы, глубина равна ширине цели, как проиллюстрировано на рисунке.

Учитывая тот факт, что эллипс рассеивания имеет большую длину и малую ширину, можно сделать вывод о том, что при малой глубине цели снарядов в цель попадает меньше, чем при большой её глубине. То есть, чем больше глубина цели, тем легче в неё попасть. С увеличением дальности стрельбы поражаемое пространство цели уменьшается, так как увеличивается угол падения.

Прямым выстрелом называется выстрел, при котором всё расстояние от точки вылета до точки падения является поражаемым пространством (см. рис. 13).

Это получается в том случае, если высота траектории не превышает высоту цели. Дальность прямого выстрела зависит от крутизны траектории и высоты цели.

Дальностью прямого выстрела (или дальностью настильности) называется расстояние, на котором высота траектории не превышает высоты цели.

Наиболее важные труды по баллистике

  • — теория Тартальи,
  • 1638 год — труд Галилео Галилея о параболическом движении тела, брошенного под углом.
  • 1641 год — ученик Галилея – Торичелли, развивая параболическую теорию выводит выражение горизонтальной дальности, что легло впоследствии в основу артиллерийских таблиц стрельбы.
  • 1687 год — Исаак Ньютон доказывает влияние сопротивления воздуха на брошенное тело, вводя понятие коэффициента формы тела, а также проводя прямую зависимость сопротивления движения от поперечного сечения (калибра) тела (снаряда).
  • 1690 год — Иван Бернулли математически описывает главную задачу баллистики, решив задачу определения движения шара в сопротивляющейся среде.
  • 1737 год — Биго де Морог (1706-1781) опубликовал теоретическое исследование вопросов внутренней баллистики, что заложило основу рационального конструирования орудий.
  • 1740 год — англичанин Робинс научился определять начальные скорости снаряда и доказал, что парабола полета снаряда имеет двоякую кривизну – ее нисходящая ветвь короче восходящей, дополнительно он опытным путем пришел к выводу, что сопротивление воздуха полету снарядов при начальных скоростях выше 330 м/с возрастает скачкообразно и должно рассчитываться по иной формуле.
  • Вторая половина XVIII века
  • Даниил Бернулли занимается вопросом сопротивления воздуха движению снарядов;
  • математик Леонард Эйлер развивает работы Робинса, труды Эйлера по внутренней и внешней баллистике ложатся в основу создания артиллерийских таблиц стрельбы.
Ссылка на основную публикацию
Как поставить старую версию скайпа
Программа Skype, как и любой другой активно развивающийся софт, постоянно обновляется. Однако не всегда новые версии выглядят и работают лучше...
Как повернуть диаграмму на 90 градусов
Научимся вращать (поворачивать) график функции относительно начала координат. Для примера используем график функции y=x*sin(10*x). Координаты (x'; y') в результате поворота...
Как повернуть купольную камеру видеонаблюдения
Страница 12 5 Регулировка положения видеокамеры Положение купольной видеокамеры можно регулировать по двум осям. Следя за изображением на мониторе, отрегулируйте...
Как поставить фотографию на контакт в андроид
На любом смартфоне реализована возможность установки изображения на телефонный контакт. Оно будет отображаться при поступлении входящих звонков от этого контакта...
Adblock detector