Как увеличить ток зарядного устройства

Как увеличить ток зарядного устройства

Простейшее зарядное устройство для автомобильных, тракторных и мотоциклетных аккумуляторных батарей обычно состоит из понижающего трансформатора и подключенного к его вторичной обмотке выпрямителя. Последовательно с батареей включают регулятор тока — мощный проволочный реостат, транзисторный или тиристорный стабилизатор тока. На всех этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность возникновения пожара.
В основу работы устройства [16.1], предназначенного для восстановления 100% работоспособности засульфатированных аккумуляторных батарей, положена идея, защищенная а. с. 372599 СССР, см. также [16.2]. Для восстановления батарей предложено заряжать их асимметричным током при соотношении величин прямого и обратного тока 10:1 и времени протекания тока в прямом и обратном направлении 1:2 в течение 1.. .2 суток.
Входное напряжение должно вдвое превышать напряжение заряжаемого аккумулятора.
В схеме (рис. 16.1) использован однополупериодный выпрямитель, который работает на встречную ЭДС и обеспечивает в зарядной цепи пульсирующий ток с соотношением ток/пауза примерно 1:2, постоянная составляющая которого по амперметру РА1 устанавливается равной рекомендуемому для аккумулятора зарядному току. Наличие разрядного резистора (лампа накаливания) обеспечивает обратный ток, в 10 раз меньший зарядного.
Об эффективности заряда можно судить по напряжению на аккумуляторе: у засульфатированного аккумулятора из 6-ти банок конечное напряжение при заряде составит менее 15 В (при температуре электролита около 15°С), а у исправного — 15,8. 16,2 Б.
Стоит отметить, что автор устройства [16.1] для его питания использовал ток не совсем синусоидальной формы, поскольку понижающий трансформатор работал с вынужденным подмагничиванием.


Рис. 16.1. Схема выпрямителя для восстановления работоспособности аккумуляторных батарей


Рис. 16.2. Схема зарядного устройства для стартерных аккумуляторных батарей

Зарядное устройство Н. Таланова и В. Фомина (рис. 16.2) имеет широкие пределы регулирования зарядного тока — практически от нуля до 10 А — и может быть использовано для заряда аккумуляторов, рассчитанных на напряжение 12 В [16.3].
В устройстве использован симисторный регулятор В. Фомина с дополнительно введенными маломощным диодным мостом VD1 — VD4 и резисторами R3 и R4. После подключения устройства к сети при плюсовом ее полупериоде (плюс на верхнем по схеме проводе) начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединенные резисторы R1 и R2. При минусовом полупериоде сети этот конденсатор заряжается через те же резисторы R2 и R1, диод VD2 и резистор R4. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется только его полярность.
Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается, и конденсатор быстро разряжается через лампу и управляющий электрод сими-стора VS1. При этом симистор открывается. В конце полупериода симистор закрывается. Описанный процесс повторяется в каждом полупериоде напряжения сети.
Общеизвестно, например из [16.1], что управление тиристором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса. Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора.
В описываемом зарядном устройстве после включения си-мистора VS1 его основной ток протекает не только через первичную обмотку трансформатора Т1, но и через один из резисторов — R3 или R4, которые в зависимости от полярности сетевого напряжения поочередно подключаются параллельно первичной обмотке трансформатора диодами VD4 и VD3 соответственно.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5 и VD6. Резистор R6, кроме того, формирует импульсы разрядного тока, которые, как утверждается в [16.4], продлевают срок службы батареи.
Трансформатор Т1 можно изготовить на базе лабораторного трансформатора ЛАТР-2М, изолировав его обмотку (она будет первичной) тремя слоями лакоткани и намотав вторичную обмотку, состоящую из 80 витков провода сечением не менее 3 мм2, с отводом от середины.
Конденсаторы С1 и С2 — МБМ или другие на напряжение не менее 400 и 160 б соответственно. Неоновая лампа HL1 — ИН-3, ИН-ЗА с одинаковыми по конструкции и размерам электродами для обеспечения симметричности импульсов тока через первичную обмотку трансформатора.
Диоды КД202А заменимы на Д242, Д242А или другие со средним прямым током не менее 5 А. Диод размещают на дюралюминиевой теплоотводящей пластине с площадью поверхности не менее 120 см2. Симистор — на теплоотводящей пластине примерно вдвое меньшей площади. Резистор R6 типа ПЭВ-10; его можно заменить пятью параллельно соединенными резисторами МЛТ-2 сопротивлением 110 Ом. Вместо резистора R6 можно установить лампу накаливания на напряжение 12 В мощностью 10 Вт. Она индицировала бы подключение зарядного устройства к аккумуляторной батарее и, одновременно, освещала бы рабочее место.
Цепи зарядного тока необходимо выполнять проводом марки МГШВ сечением 2.5. 3 мм2.
При налаживании устройства сначала устанавливают требуемый предел зарядного тока (но не более 10 А) резистором R2. Для этого к выходу устройства через амперметр на 10 А подключают батарею аккумуляторов, строго соблюдая полярность. Движок резистора R1 переводят в крайнее верхнее по схеме положение, а резистора R2 — в крайнее нижнее, и включают устройство в сеть. Необходимое значение максимального зарядного тока устанавливают перемещением движка резистора R2.
В процессе заряда ток через батарею изменяется, уменьшаясь примерно на 20%. Поэтому перед процессом заряда устанавливают начальный ток батареи несколько большим номинального значения (примерно на 10%). Окончание заряда определяют по плотности электролита или вольтметром — напряжение отключенной батареи должно быть в пределах 13,8. 14,2 В.
Для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч, а также для проведения циклов «заряд-разряд», необходимых для восстановления умеренно засульфатиро-ванных аккумуляторов и профилактики исправных, разработано специальное устройство [16.5].
Основой устройства является стабилизатор тока на составном транзисторе (VT1, VT2) с резистором R1 в эмиттерной цепи (рис. 16.3). В базовой цепи включен полевой транзистор VT3, который задает ВАХ стабилизатора тока. Потенциометром R5 устанавливают зарядный ток. Германиевые диоды VD2, VD3 служат для его термостабилизации. Подробно стабилизатор тока описан в статье [16.6].


Рис. 16.3. Схема устройства для заряда свинцово-кислотных аккумуляторных батарей емкостью 9. 14 А-ч

Для восстановления батареи необходимо заряжать ее импульсами тока; в промежутках между импульсами она разряжается через специальный резистор, подключаемый параллельно батарее GB1. Разрядный ток при этом меньше зарядного в 10 раз, а по длительности в 2 раза больше [16.7]. Импульсы зарядного тока формируются схемой сравнения напряжения VT4, VD5 и тиристором VS1. Стабилитрон VD4 ограничивает напряжение до 18 6 (т.е. до половины амплитудного) после выпрямительного диода VD1. При достижении на аккумуляторной батарее ЭДС около 14 В стабилитрон VD5 закрывается, вызывая запирание транзистора VT4 и тиристора VS1. Так осуществляется автоматическое прекращение процесса заряда, но при условии, что к аккумуляторной батарее не был подключен разрядный резистор. Измерительный прибор РА1 регистрирует средний зарядный ток, который в 3 раза меньше истинного зарядного. При подключении разрядного резистора ток следует увеличить на 10%.
Питание устройства осуществляется от трансформатора мощностью 50 Вт. Резистор R1 изготовлен из отрезка манганинового провода диаметром 0,51 мм или из другого материала с высоким удельным сопротивлением. Переменный резистор R5 — проволочный. Измерительный прибор РА1 со шкалой на 1 А.
Транзисторы VT1, VT2 и тиристор VS1 установлены на алюминиевой пластине толщиной 3 мм и размерами 80×100 мм, выполняющей роль теплоотвода. Диоды VD2, VD3 должны иметь тепловой контакт с корпусами транзисторов VT1, VT2.
Импульс зарядного тока, его длительность и паузу контролируют осциллографом на резисторе R1.
Принципиальная схема бестрансформаторного двухполупе-риодного выпрямителя по мостовой схеме для заряда аккумуляторных батарей показана на рис. 16.4 [16.8].


Рис. 16.4. Схема выпрямителя для заряда аккумуляторных батарей
Емкость С гасящих конденсаторов может быть определена как: 3250XI3/UC (мкФ), где I3 — зарядный ток, A, Uc — напряжение сети, В.
Так, для получения зарядного тока 2 А при напряжении сети 220 6 емкость батареи конденсаторов составит 3250*2/220=32 мкФ. Поскольку сейчас повсеместно используется сеть с напряжением 220 б, расчетное выражение упрощается: С (мкФ)=14,8Х13 (А).
Стоит напомнить, что для бестрансформаторных выпрямителей использовать электролитические конденсаторы нельзя, так как при прохождении переменного тока через полярные конденсаторы происходит разложение электролита, сопровождаемое обильным газовыделением, что вызывает взрыв конденсатора.
В таких выпрямителях обычно используют бумажные конденсаторы типа КБГ, МБГП, МБГЧ, МБГО и т.д.
Выпрямитель по схеме на рис. 16.5 [16.8] имеет емкостный делитель, образованный конденсаторами С1 — С5, включение и
выключение которых производится соответствующими тумблерами. Этим изменяется величина выпрямленного тока. Для предохранения диодов выпрямителя от пробоя при включении и выключении прибора и улучшения его выходной характеристики в схеме имеется дроссель L1. Неоновая лампа и резистивные цепи на входе выпрямителя служит для индикации включения, а также для разряда конденсаторов после выключения выпрямителя. Выходная мощность устройства может достигать 500 Вт. Диоды выпрямителя выбирают в зависимости от тока нагрузки.

Читайте также:  Как найти понравившееся в инстаграм


Рис. 16.5. Схема выпрямителя для заряда аккумуляторов

В случае, когда аккумулятор длительное время хранится без дела, он в результате естественного саморазряда и сульфата-ции пластин приходит в негодность.
Для того чтобы длительное хранение не приводило к порче аккумуляторной батареи, ее нужно постоянно поддерживать в заряженном состоянии [16.9]. Заводы изготовители рекомендуют заряжать аккумуляторы током, равным 0,1 от номинальной емкости (т.е. для 6СТ-55 ток заряда будет 5,5 А), но это годится только для быстрого заряда «посаженной» батареи. Как показывает практика, для подзарядки аккумулятора в процессе длительного хранения требуется небольшой ток, около 0,1 . 0,3 А (для 6СТ-55). Если хранящийся аккумулятор периодически, примерно раз в месяц, ставить на такую подзарядку на 2. 3 дня, то можно быть уверенным в том, что он в любой момент будет готов к эксплуатации даже через несколько лет такого хранения.
На рис. 16.6 показана схема «подзаряжающего» устройства — бестрансформаторного источника питания, выдающего постоянное напряжение 14,4 В при токе до 0,3 А [16.9]. Источник построен по схеме параметрического стабилизатора с емкостным балластным сопротивлением. Напряжение от сети поступает на мостовой выпрямитель VD1 — VD4 через конденсатор С1. На выходе выпрямителя включен стабилитрон VD5 на 14,4 В. Конденсатор С1 ограничивает ток до величины не более 0,3 А. Конденсатор С2 сглаживает пульсации выпрямленного напряжения. Аккумуляторная батарея подключается параллельно стабилитрону VD5.

Рис. 16.6. Схема устройства для подзарядки аккумуляторных батарей

При саморазряде батареи до напряжения ниже 14,4 В начинается ее «мягкий» заряд малым током. Величина этого тока находится в обратной зависимости от напряжения на аккумуляторе, но в любом случае даже при коротком замыкании не превышает 0,3 А. При заряде батареи до напряжения 14,4 В процесс прекращается.
При эксплуатации устройства нужно соблюдать правила безопасности при работе с электроустановками.
Простое зарядное устройство для заряда автомобильных или тракторных аккумуляторов (рис. 16.7) [16.10] выгодно отличается повышенной безопасностью в эксплуатации по сравнению с бестрансформаторными аналогами. Однако его трансформатор
довольно сложен: для регулировки зарядного тока он имеет множество отводов.
Регулировка тока заряда производится галетным переключателем S1 за счет изменения числа витков первичной обмотки. Выпрямитель обеспечивает ток заряда 10. 15 А.

Рис. 16.7. Схема устройства для заряда автомобильных или тракторных аккумуляторов током 10. 15 А

Трансформатор Т1 — любой с габаритной мощностью не менее 400 Вт.
Первичная обмотка содержит 369+50+50+50+50 витков провода диаметром 0,7 мм. Вторичная обмотка содержит 38 витков провода диаметром 3 мм. Диоды выпрямительного моста VD1 — VD4 — любые с допустимым прямым током не менее 10 А, они установлены на радиатор площадью примерно 100 см2. В цепь нагрузки включен амперметр РА1 с пределом измерения 20 А.
Соблюдение режима эксплуатации и, в частности, режима заряда аккумуляторов гарантирует их безотказную работу. Заряд аккумуляторов необходимо производить током, который определяется по формулам [16.11]:
I=Q/10 — для кислотных аккумуляторов, l=Q/4 — для щелочных аккумуляторов,
где: Q — паспортная емкость аккумулятора, А-ч, — средний зарядный ток, А.
Кислотные аккумуляторы особенно чувствительны к отклонению параметров заряда от номинальных. Установлено, что заряд чрезмерно большим током приводит к деформации пластин и даже к их разрушению. Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает
оптимальное протекание электрохимических процессов в аккумуляторе и нормальную его работу в течение длительного времени.
Степень заряженности аккумулятора можно контролировать по плотности электролита и напряжению (для кислотных аккумуляторов) или только по напряжению (для щелочных аккумуляторов). Окончание процесса заряда кислотного аккумулятора характеризуется установлением напряжения на одном элементе батареи, равного 2,5. 2,6 В.
Кислотные аккумуляторы чувствительны к недозарядам и перезарядам, поэтому следует своевременно заканчивать заряд.
Щелочные аккумуляторы менее критичны к режиму эксплуатации. Для них окончание заряда характеризуется установлением на одном элементе батареи аккумуляторов постоянного напряжения 1,4. 1,5 В.
Для регулировки зарядного тока можно использовать магазин конденсаторов, включенный последовательно с первичной обмоткой трансформатора и выполняющий функцию гасящего сопротивления [16.11]. Подобное устройство описано в статье [16.12]. Здесь тепловая (активная) мощность выделяется лишь на циодах выпрямительного моста и в трансформаторе. В этом уст-эойстве ток заряда аккумулятора поддерживается на определенном уровне: в процессе заряда напряжение на аккумуляторе /величивается, а ток через него стремится уменьшиться. Но при этом возрастает приведенное сопротивление первичной обмотки трансформатора Т1, падение напряжения на ней увеличивается, и ок через аккумулятор меняется мало.
Наибольшее значение тока через аккумулятор при задан-юй емкости конденсатора С будет при равенстве падений напря-

В статье речь пойдет про то, как повысить силу тока в цепи зарядного устройства, в блоке питания, трансформатора, в генераторе, в USB портах компьютера не изменяя напряжения.

Что такое сила тока?

Электрический ток представляет собой упорядоченное перемещение заряженных частиц внутри проводника при обязательном наличии замкнутого контура.

Появление тока обусловлено движением электронов и свободных ионов, имеющих положительный заряд.

В процессе перемещения заряженные частицы могут нагревать проводник и оказывать химическое действие на его состав. Кроме того, ток может оказывать влияние на соседние токи и намагниченные тела.

Сила тока — электрический параметр, представляющий собой скалярную величину. Формула:

I=q/t, где I — сила тока, t — время, а q — заряд.

Стоит знать и закон Ома, по которому ток прямо пропорционален U (напряжению) и обратно пропорционален R (сопротивлению).

I=U/R.

Сила тока бывает двух видов — положительной и отрицательной.

Ниже рассмотрим, от чего зависит этот параметр, как повысить силу тока в цепи, в генераторе, в блоке питания и в трансформаторе.

Приведем проверенные рекомендации, которые позволят решить поставленные задачи.

От чего зависит сила тока?

Чтобы повысить I в цепи, важно понимать, какие факторы могут влиять на этот параметр. Здесь можно выделить зависимость от:

  • Сопротивления. Чем меньше параметр R (Ом), тем выше сила тока в цепи.
  • Напряжения. По тому же закону Ома можно сделать вывод, что при росте U сила тока также растет.
  • Напряженности магнитного поля. Чем она больше, тем выше напряжение.
  • Числа витков катушки. Чем больше этот показатель, тем больше U и, соответственно, выше I.
  • Мощности усилия, которое передается на ротор.
  • Диаметра проводников. Чем он меньше, тем выше риск нагрева и перегорания питающего провода.
  • Конструкции источника питания.
  • Диаметра проводов статора и якоря, числа ампер-витков.
  • Параметров генератора — рабочего тока, напряжения, частоты и скорости.

Как повысить силу тока в цепи?

Бывают ситуации, когда требуется повысить I, который протекает в цепи, но при этом важно понимать, что нужно принять меры по защите электроприборов, сделать это можно с помощью специальных устройств.

Рассмотрим, как повысить силу тока с помощью простых приборов.

Для выполнения работы потребуется амперметр.

По закону Ома ток равен напряжению (U), деленному на сопротивление (R). Простейший путь повышения силы I, который напрашивается сам собой — увеличение напряжения, которое подается на вход цепи, или же снижение сопротивления. При этом I будет увеличиваться прямо пропорционально U.

К примеру, при подключении цепи в 20 Ом к источнику питания c U = 3 Вольта, величина тока будет равна 0,15 А.

Читайте также:  Как выставить обороты кулера в биосе

Если добавить к цепи еще один источник питания на 3В, общую величину U удается повысить до 6 Вольт. Соответственно, ток также вырастет в два раза и достигнет предела в 0,3 Ампера.

Подключение источников питания должно осуществляться последовательно, то есть плюс одного элемента подключается к минусу первого.

Для получения требуемого напряжения достаточно соединить в одну группу несколько источников питания.

В быту источники постоянного U, объединенные в одну группу, называются батарейками.

Несмотря на очевидность формулы, практические результаты могут отличаться от теоретических расчетов, что связано с дополнительными факторами — нагревом проводника, его сечением, применяемым материалом и так далее.

В итоге R меняется в сторону увеличения, что приводит и к снижению силы I.

Повышение нагрузки в электрической цепи может стать причиной перегрева проводников, перегорания или даже пожара.

Вот почему важно быть внимательным при эксплуатации приборов и учитывать их мощность при выборе сечения.

Величину I можно повысить и другим путем, уменьшив сопротивление. К примеру, если напряжение на входе равно 3 Вольта, а R 30 Ом, то по цепи проходит ток, равный 0,1 Ампер.

Если уменьшить сопротивление до 15 Ом, сила тока, наоборот, возрастет в два раза и достигнет 0,2 Ампер. Нагрузка снижается почти к нулю при КЗ возле источника питания, в этом случае I возрастают до максимально возможной величины (с учетом мощности изделия).

Дополнительное снизить сопротивление можно путем охлаждения провода. Такой эффект сверхпроводимости давно известен и активно применяется на практике.

Чтобы повысить силу тока в цепи часто применяются электронные приборы, например, трансформаторы тока (как в сварочниках). Сила переменного I в этом случае возрастает при снижении частоты.

Если в цепи переменного тока имеется активное сопротивление, I увеличивается при росте емкости конденсатора и снижении индуктивности катушки.

В ситуации, когда нагрузка имеет чисто емкостной характер, сила тока возрастает при повышении частоты. Если же в цепь входят катушки индуктивности, сила I будет увеличиваться одновременно со снижением частоты.

Чтобы повысить силу тока, можно ориентироваться на еще одну формулу, которая выглядит следующим образом:

I = U*S/(ρ*l). Здесь нам неизвестно только три параметра:

  • S — сечение провода;
  • l — его длина;
  • ρ — удельное электрическое сопротивление проводника.

Чтобы повысить ток, соберите цепочку, в которой будет источник тока, потребитель и провода.

Роль источника тока будет выполнять выпрямитель, позволяющий регулировать ЭДС.

Подключайте цепочку к источнику, а тестер к потребителю (предварительно настройте прибор на измерение силы тока). Повышайте ЭДС и контролируйте показатели на приборе.

Как отмечалось выше, при росте U удается повысить и ток. Аналогичный эксперимент можно сделать и для сопротивления.

Для этого выясните, из какого материала сделаны провода и установите изделия, имеющие меньшее удельное сопротивление. Если найти другие проводники не удается, укоротите те, что уже установлены.

Еще один путь — увеличение поперечного сечения, для чего параллельно установленным проводам стоит смонтировать аналогичные проводники. В этом случае возрастает площадь сечения провода и увеличивается ток.

Если же укоротить проводники, интересующий нас параметр (I) возрастет. При желании варианты увеличения силы тока разрешается комбинировать. Например, если на 50% укоротить проводники в цепи, а U поднять на 300%, то сила I возрастет в 9 раз.

Как повысить силу тока в блоке питания?

В интернете часто можно встретить вопрос, как повысить I в блоке питания, не изменяя напряжение. Рассмотрим основные варианты.

Блок питания на 12 Вольт работает с током 0,5 Ампер. Как поднять I до предельной величины? Для этого параллельно БП ставится транзистор. Кроме того, на входе устанавливается резистор и стабилизатор.

При падении напряжения на сопротивлении до нужной величины открывается транзистор, и остальной ток протекает не через стабилизатор, а через транзистор.

Последний, к слову, необходимо выбирать по номинальному току и ставить радиатор.

Кроме того, возможны следующие варианты:

  • Увеличить мощность всех элементов устройства. Поставить стабилизатор, диодный мост и трансформатор большей мощности.
  • При наличии защиты по току снизить номинал резистора в цепочке управления.

Имеется блок питания на U = 220-240 Вольт (на входе), а на выходе постоянное U = 12 Вольт и I = 5 Ампер. Задача — увеличить ток до 10 Ампер. При этом БП должен остаться приблизительно в тех же габаритах и не перегреваться.

Здесь для повышения мощности на выходе необходимо задействовать другой трансформатор, который пересчитан под 12 Вольт и 10 Ампер. В противном случае изделие придется перематывать самостоятельно.

При отсутствии необходимого опыта на риск лучше не идти, ведь высока вероятность короткого замыкания или перегорания дорогостоящих элементов цепи.

Трансформатор придется поменять на изделие большего размера, а также пересчитывать цепочку демпфера, находящегося на СТОКЕ ключа.

Следующий момент — замена электролитического конденсатора, ведь при выборе емкости нужно ориентироваться на мощность устройства. Так, на 1 Вт мощности приходится 1-2 мкФ.

Также рекомендуется поменять диоды с выпрямителями. Кроме того, может потребоваться установка нового диода выпрямителя на низкой стороне и увеличение емкости конденсаторов.

После такой переделки устройство будет греться сильнее, поэтому без установки вентилятора не обойтись.

Как повысить силу тока в зарядном устройстве?

В процессе пользования зарядными устройствами можно заметить, что ЗУ для планшета, телефона или ноутбука имеют ряд отличий. Кроме того, может различаться и скорость, с которой происходит заряд девайсов.

Здесь многое зависит от того, используется оригинальное или неоригинальное устройство.

Чтобы измерить ток, который поступает к планшету или телефону от зарядного устройства, можно использовать не только амперметр, но и приложение Ampere.

С помощью софта удается выяснить скорость заряда и разрядки АКБ, а также его состояние. Приложением можно пользоваться бесплатно. Единственным недостатком является реклама (в платной версии ее нет).

Главной проблемой зарядки аккумуляторов является небольшой ток ЗУ, из-за чего время набора емкости слишком большое. На практике ток, протекающий в цепи, напрямую зависит от мощности зарядного устройства, а также других параметров — длины кабеля, его толщины и сопротивления.

С помощью приложения Ampere можно увидеть, при какой силе тока производится заряд девайса, а также проверить, может ли изделие заряжаться с большей скоростью.

Для использования возможностей приложения достаточно скачать его, установить и запустить.

После этого телефон, планшет или другое устройство подключается к зарядному устройству. Вот и все — остается обратить внимание на параметры тока и напряжения.

Кроме того, вам будет доступна информация о типе батареи, уровне U, состоянии АКБ, а также температурном режиме. Также можно увидеть максимальные и минимальные I, имеющие место в период цикла.

Если в распоряжении имеется несколько ЗУ, можно запустить программу и пробовать делать зарядку каждым из них. По результатам тестирования проще сделать выбор ЗУ, обеспечивающего максимальный ток. Чем выше будет этот параметр, тем быстрее зарядится девайс.

Измерение силы тока — не единственное, на что способно приложение Ampere. С его помощью можно проверить, сколько потребляется I в режиме ожидания или при включении различных игр (приложений).

Например, после отключения яркости дисплея, деактивации GPS или передачи данных легко заметить снижение нагрузки. На этом фоне проще сделать вывод, какие опции в большей степени разряжают аккумулятор.

Что еще стоит отметить? Все производители рекомендуют заряжать девайсы «родными» ЗУ, выдающими определенный ток.

Но в процессе эксплуатации бывают ситуации, когда приходится заряжать телефон или планшет другими зарядными, имеющими большую мощность. В итоге скорость зарядки может оказаться выше. Но не всегда.

Мало, кто знает, но некоторые производители ограничивают предельный ток, который может принимать АКБ устройства.

Например, устройство Самсунг Гэлекси Альфа поставляется вместе с зарядным на ток 1,35 Ампер.

При подключении 2-амперного ЗУ ничего не меняется — скорость зарядки осталась той же. Это объясняется ограничением, которое установлено производителем. Аналогичный тест был произведен и с рядом других телефонов, что только подтвердило догадку.

С учетом сказанного выше можно сделать вывод, что «неродные» ЗУ вряд ли причинят вред аккумулятору, но иногда могут помочь в более быстрой зарядке.

Рассмотрим еще одну ситуацию. При зарядке девайса через USB-разъем АКБ набирает емкость медленнее, чем если заряжать устройство от обычного ЗУ.

Читайте также:  Звук в играх прерывается

Это объясняется ограничением силы тока, которую способен отдавать USB порт (не больше 0,5 Ампер для USB 2.0). В случае применения USB3.0 сила тока возрастает до уровня 0,9 Ампер.

Кроме того, существует специальная утилита, позволяющая «тройке» пропускать через себя больший I.

Для устройств типа Apple программа называется ASUS Ai Charger, а для других устройств — ASUS USB Charger Plus.

Как повысить силу тока в трансформаторе?

Еще один вопрос, который тревожит любителей электроники — как повысить силу тока применительно к трансформатору.

Здесь можно выделить следующие варианты:

  • Установить второй трансформатор;
  • Увеличить диаметр проводника. Главное, чтобы позволило сечение «железа».
  • Поднять U;
  • Увеличить сечение сердечника;
  • Если трансформатор работает через выпрямительное устройство, стоит применить изделие с умножителем напряжения. В этом случае U увеличивается, а вместе с ним растет и ток нагрузки;
  • Купить новый трансформатор с подходящим током;
  • Заменить сердечник ферромагнитным вариантом изделия (если это возможно).

В трансформаторе работает пара обмоток (первичная и вторичная). Многие параметры на выходе зависят от сечения проволоки и числа витков. Например, на высокой стороне X витков, а на другой — 2X.

Это значит, что напряжение на вторичной обмотке будет ниже, как и мощность. Параметр на выходе зависит и от КПД трансформатора. Если он меньше 100%, снижается U и ток во вторичной цепи.

С учетом сказанного выше можно сделать следующие выводы:

  • Мощность трансформатора зависит от ширины постоянного магнита.
  • Для увеличения тока в трансформаторе требуется снижение R нагрузки.
  • Ток (А) зависит от диаметра обмотки и мощности устройства.
  • В случае перемотки рекомендуется использовать провод большей толщины. При этом отношение провода по массе на первичной и вторичной обмотке приблизительно идентично. Если на первичную обмотку намотать 0,2 кг железа, а на вторичную — 0,5 кг, первичка сгорит.

Как повысить силу тока в генераторе?

Ток в генераторе напрямую зависит от параметра сопротивления нагрузки. Чем ниже этот параметр, тем выше ток.

Если I выше номинального параметра, это свидетельствует о наличии аварийного режима — уменьшения частоты, перегрева генератора и прочих проблем.

Для таких случаев должна быть предусмотрена защита или отключение устройства (части нагрузки).

Кроме того, при повышенном сопротивлении напряжение снижается, происходит подсадка U на выходе генератора.

Чтобы поддерживать параметр на оптимальном уровне, обеспечивается регулирование тока возбуждения. При этом повышение тока возбуждения ведет к росту напряжения генератора.

Частота сети должна находиться на одном уровне (быть постоянной величиной).

Рассмотрим пример. В автомобильном генераторе необходимо повысить ток с 80 до 90 Ампер.

Для решения этой задачи требуется разобрать генератор, отделить обмотку и припаять к ней вывод с последующим подключением диодного моста.

Кроме того, сам диодный мост меняется на деталь большей производительности.

После этого требуется снять обмотку и кусок изоляции в месте, где должен припаиваться провод.

При наличии неисправного генератора с него откусывается вывод, после чего с помощью медной проволоки наращиваются ножки такой же толщины.

После припаивания место стыка изолируется термоусадкой.

Следующим этапом требуется купить 8-диодный мост. Найти его — весьма сложная задача, но нужно постараться.

Перед установкой желательно проверить изделие на исправность (если деталь б/у, возможен пробой одного или нескольких диодов).

После установки моста крепите конденсатор, а далее — регулятор напряжения на 14,5 Вольт.

Можно приобрести пару регуляторов — на 14,5 (немецкий) и на 14 Вольт (отечественный).

Теперь высверливаются клепки, отпаиваются ножки и разделяются таблетки. Далее таблетка подпаивается к отечественному регулятору, который фиксируется с помощью винтов.

Остается припаять отечественную «таблетку» к иностранному регулятору и собирать генератор.

Итоги

Как видно из статьи, повысить силу тока, не изменяя напряжение в сети, реально.

Главное — разобраться с особенностями конструкции устройства, которое подлежит корректировке, и иметь практические навыки работы с измерительными приборами и паяльником. Кроме того, важно осознавать потенциальные риски от внесения корректировок.

Здравствуйте.
Сейчас занимаюсь переделкой зарядника от мобильного для питания небольшого FM/MP3 плеера. Схема зарядки вот такая

Изначальные параметры выхода 8.5В 750мА (во всяком случае так на корпусе написано).

Для питания плеера нужно было 5В — напряжение выхода я изменил заменой стабилитрона VD6 (в моем случае 12В на 8.2В). Подключил к плееру и заметил вольтметром что при полной мощности звука (6W) напряжение проседает с 5В до 4В, а на ослике видно что и до 3В.

Давай думать как увеличить ток выхода зарядника. Сначало R5 заменил с 8.2Ом на 4.7Ом — ток выхода поднялся, но недостаточно — падение напряжение составило с 5В до 3.7В. Тогда я еще заменил R8 с 470Ом на 220Ом, ток еще поднялся — падение напряжение составило с 5В до 4В.

В общем этот результат меня уже устраивает, так как при динамической нагрузке в виде плеера и конденсатора 2000мкФ непосредственно на усилке, при полной мощности звука просадка напряжение составляет не более 0.3В в импульсе.

Достичь еще меньшей просадки напряжения что-то изменяя в заряднике простыми методами наверное и нереально, так-как стабилизация напряжения идет по высоковольтной части, а не на низковольтной вторичке — а там диод на котором напряжения падает тем больше чем больше ток через него течет.

Несколько примечаний.
1. В моем случае не пришлось увеличивать емкость С1 (4.7мкФ), перематывать трансформатор, менять транзистор VT1 на более мощный (например MJE13003) так-как выходная мощность зарядника осталась приблизительно тойже. Примечание: транзистор таки поменял на MJE13003 с небольшим алюминиевым радиатором в виде пластинки 1.2*2см. Все-таки заменой резистора R5 ограничение тока через транзистор я увеличил почти в два раза и MJE13001 по теплу уже может не справиться.
2. В некоторых зарядниках нет транзистора VT2. По своей сути как я понимаю он защищает схему от короткого замыкания по выхода, ну и ток ограничивает через транзистор VT1 и обмотку трансформатора.
3. В некоторых зарядниках конденсатор C3 до 10мкФ, для динамической нагрузки есть смысл его заменить на 0.33мкФ, тогда зарядник будет быстрее реагировать на просадку напряжения на выходе.

Если в чем то неправ, то прошу поправить, так-как я все еще в процессе и есть некоторые сомнения…

Дополнения.
1. Забыл написать, конденсатор С4 у меня 470мкФ, заменю на 820мкФ LowESR. Заменил, эффект бомба — просадка напряжения снизилась еще на 0.3В. У старого на 470мкФ внутренне сопротивление было 0.12Ом, а у нового на 820мкФ 0.03Ом.
2. Родные провода от зарядки нафиг, у моих сопротивление 0.4Ом, их два — значит суммарное 0.8Ом, а это при токе всего в 1А уже 0.8В падения напряжения на одних проводах. Поэтому надо менять родные на провода сечением хотя бы 0.3кв.мм, и падение напряжение на них будет раз в 10 меньше чем на родных.
3 В моей зарядка мост высоковольтной части полный, из четырех диодов — а схема стырина из тырнета. Если у Вас всего один диод, но есть разводка на плате под полный мост — советую допаять три диода.
4. В параллель родному диоду VD на вторичке можно подпаять еще точно такой же, это еще снизит падение на 0.1-0.3В (в зависимости от диодов). Я пытался заменить свой быстрый диод со скоростью закрытия 150ns на шоттки и на более мощный быстрый но скоростью 500ns — как результат еще большее падение напряжения даже на холостых. Происходит это скорее всего из-за того что замена более медленная по скорости открытиязакрытия.
5. Сильно советую после перепайки схемы, да и вообще пока Вы ее ковыряете — включать в 220 через последовательно подключенную лампочку на 220 Вольт (мощность лампы должна соответствовать или быть больше мощности нагрузки). Ну и ясень пень не забывать выключать из сети прежде чем трогать плату руками.

Ссылка на основную публикацию
Как создать словарь в word
Меня интересует вот такая тема: когда печатаешь текст на компе, например, с ошибкой правописания, появляется подсказка - как правильно надо....
Как сделать кроссворд в ворде 2010
Пользоваться файлами, созданными в MS Office, можно как угодно: открыть документ Ворд онлайн, составить в Экселе квартальный отчёт или в...
Как сделать местный разрез
Основным назначением видов является определение формы внешних поверхностей предмета. Выявление на видах формы внутренних поверхностей при помощи штриховых линий не...
Как создать таблицу на компьютере
Как создать таблицу в Word? Сейчас я просто не представляю, как можно работать без такой нужной и полезной программы, как...
Adblock detector